A Model with No Magic Set
Ciesielski, Krzysztof ; Shelah, Saharon
J. Symbolic Logic, Tome 64 (1999) no. 1, p. 1467-1490 / Harvested from Project Euclid
We will prove that there exists a model of $ZFC+"\mathfrak{c} = \omega_2"$ in which every $M \subseteq \mathbb{R}$ of cardinality less than continuum $\mathfrak{c}$ is meager, and such that for every $X \subseteq \mathbb{R}$ of cardinality $\mathfrak{c}$ there exists a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ with f[X] = [0, 1]. In particular in this model there is no magic set, i.e., a set $M \subseteq \mathbb{R}$ such that the equation f[M] = g[M] implies f = g for every continuous nowhere constant functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$.
Publié le : 1999-12-14
Classification: 
@article{1183745931,
     author = {Ciesielski, Krzysztof and Shelah, Saharon},
     title = {A Model with No Magic Set},
     journal = {J. Symbolic Logic},
     volume = {64},
     number = {1},
     year = {1999},
     pages = { 1467-1490},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745931}
}
Ciesielski, Krzysztof; Shelah, Saharon. A Model with No Magic Set. J. Symbolic Logic, Tome 64 (1999) no. 1, pp.  1467-1490. http://gdmltest.u-ga.fr/item/1183745931/