Countable Filters on $\omega$
Spinas, Otmar
J. Symbolic Logic, Tome 64 (1999) no. 1, p. 469-478 / Harvested from Project Euclid
Two countable filters on $\omega$ are incompatible if they have no common infinite pseudointersection. Letting $\alpha(P_f)$ denote the minimal size of a maximal uncountable family of pairwise incompatible countable filters on $\omega$, we prove the consistency of t $< \alpha(P_f)$.
Publié le : 1999-06-14
Classification: 
@article{1183745788,
     author = {Spinas, Otmar},
     title = {Countable Filters on $\omega$},
     journal = {J. Symbolic Logic},
     volume = {64},
     number = {1},
     year = {1999},
     pages = { 469-478},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745788}
}
Spinas, Otmar. Countable Filters on $\omega$. J. Symbolic Logic, Tome 64 (1999) no. 1, pp.  469-478. http://gdmltest.u-ga.fr/item/1183745788/