Rectangular Games
Venema, Yde
J. Symbolic Logic, Tome 63 (1998) no. 1, p. 1549-1564 / Harvested from Project Euclid
We prove that every rectangularly dense diagonal-free cylindric algebra is representable. As a corollary, we give finite, sound and complete axiomatizations for the finite-variable fragments of first order logic without equality and for multi-dimensional modal S5-logic.
Publié le : 1998-12-14
Classification: 
@article{1183745647,
     author = {Venema, Yde},
     title = {Rectangular Games},
     journal = {J. Symbolic Logic},
     volume = {63},
     number = {1},
     year = {1998},
     pages = { 1549-1564},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745647}
}
Venema, Yde. Rectangular Games. J. Symbolic Logic, Tome 63 (1998) no. 1, pp.  1549-1564. http://gdmltest.u-ga.fr/item/1183745647/