Weakly O-Minimal Structures and Some of Their Properties
Kulpeshov, B. Sh.
J. Symbolic Logic, Tome 63 (1998) no. 1, p. 1511-1528 / Harvested from Project Euclid
The main result of this paper is Theorem 3.1 which is a criterion for weak o-minimality of a linearly ordered structure in terms of realizations of 1-types. Here we also prove some other properties of weakly o-minimal structures. In particular, we characterize all weakly o-minimal linear orderings in the signature $\{<, =\}$. Moreover, we present a criterion for density of isolated types of a weakly o-minimal theory. Lastly, at the end of the paper we present some remarks on the Exchange Principle for algebraic closure in a weakly o-minimal structure.
Publié le : 1998-12-14
Classification: 
@article{1183745645,
     author = {Kulpeshov, B. Sh.},
     title = {Weakly O-Minimal Structures and Some of Their Properties},
     journal = {J. Symbolic Logic},
     volume = {63},
     number = {1},
     year = {1998},
     pages = { 1511-1528},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745645}
}
Kulpeshov, B. Sh. Weakly O-Minimal Structures and Some of Their Properties. J. Symbolic Logic, Tome 63 (1998) no. 1, pp.  1511-1528. http://gdmltest.u-ga.fr/item/1183745645/