Bounding Minimal Degrees by Computably Enumerable Degrees
Li, Angsheng ; Yang, Dongping
J. Symbolic Logic, Tome 63 (1998) no. 1, p. 1319-1347 / Harvested from Project Euclid
In this paper, we prove that there exist computably enumerable degrees $\mathbf{a}$ and $\mathbf{b}$ such that $\mathbf{a} > \mathbf{b}$ and for any degree $\mathbf{x}$, if $\mathbf{x} \leq a$ and $\mathbf{x}$ is a minimal degree, then $\mathbf{x} < \mathbf{b}$.
Publié le : 1998-12-14
Classification: 
@article{1183745634,
     author = {Li, Angsheng and Yang, Dongping},
     title = {Bounding Minimal Degrees by Computably Enumerable Degrees},
     journal = {J. Symbolic Logic},
     volume = {63},
     number = {1},
     year = {1998},
     pages = { 1319-1347},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745634}
}
Li, Angsheng; Yang, Dongping. Bounding Minimal Degrees by Computably Enumerable Degrees. J. Symbolic Logic, Tome 63 (1998) no. 1, pp.  1319-1347. http://gdmltest.u-ga.fr/item/1183745634/