Equivalence Elementaire et Decidabilite pour des Structures du Type Groupe Agissant sur un Groupe Abelien
Simonetta, Patrick
J. Symbolic Logic, Tome 63 (1998) no. 1, p. 1255-1285 / Harvested from Project Euclid
We prove an Ax-Kochen-Ershov like transfer principle for groups acting on groups. The simplest case is the following: let B be a soluble group acting on an abelian group G so that G is a torsion-free divisible module over the group ring $\mathbb{Z}$[B], then the theory of B determines the one of the two-sorted structure $\langle G, B, *\rangle$, where * is the action of B on G. More generally, we show a similar principle for structures $\langle G, B, *\rangle$, where G is a torsion-free divisible module over the quotient of $\mathbb{Z}$[B] by the annulator of G. Two applications come immediately from this result: First, for not necessarily commutative domains, where we consider the action of a subgroup of the invertible elements on the additive group. We obtain then the decidability of a weakened structure of ring, with partial multiplication. The second application is to pure groups. The semi-direct product of G by B is bi- interpretable with our structure $\langle G, B, *\rangle$. Thus, we obtain stable decidable groups that are not linear over a field.
Publié le : 1998-12-14
Classification: 
@article{1183745631,
     author = {Simonetta, Patrick},
     title = {Equivalence Elementaire et Decidabilite pour des Structures du Type Groupe Agissant sur un Groupe Abelien},
     journal = {J. Symbolic Logic},
     volume = {63},
     number = {1},
     year = {1998},
     pages = { 1255-1285},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745631}
}
Simonetta, Patrick. Equivalence Elementaire et Decidabilite pour des Structures du Type Groupe Agissant sur un Groupe Abelien. J. Symbolic Logic, Tome 63 (1998) no. 1, pp.  1255-1285. http://gdmltest.u-ga.fr/item/1183745631/