On Minimal Structures
Belegradek, Oleg V.
J. Symbolic Logic, Tome 63 (1998) no. 1, p. 421-426 / Harvested from Project Euclid
For any countable transitive complete theory T with infinite models and the finite model property, we construct a minimal structure M such that the theory of M is small if and only if T is small, and is $\lambda$-stable if and only if T is $\lambda$-stable. This gives a series of new examples of minimal structures.
Publié le : 1998-06-14
Classification: 
@article{1183745510,
     author = {Belegradek, Oleg V.},
     title = {On Minimal Structures},
     journal = {J. Symbolic Logic},
     volume = {63},
     number = {1},
     year = {1998},
     pages = { 421-426},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745510}
}
Belegradek, Oleg V. On Minimal Structures. J. Symbolic Logic, Tome 63 (1998) no. 1, pp.  421-426. http://gdmltest.u-ga.fr/item/1183745510/