Undecidable Extensions of Skolem Arithmetic
Bes, Alexis ; Richard, Denis
J. Symbolic Logic, Tome 63 (1998) no. 1, p. 379-401 / Harvested from Project Euclid
Let $<_{P_2}$ be the restriction of usual order relation to integers which are primes or squares of primes, and let $\bot$ denote the coprimeness predicate. The elementary theory of $\langle\mathbb{N};\bot,<_{P_2}\rangle$, is undecidable. Now denote by $<_\Pi$ the restriction of order to primary numbers. All arithmetical relations restricted to primary numbers are definable in the structure $\langle\mathbb{N};\bot,<_\Pi\rangle$. Furthermore, the structures $\langle\mathbb{N};\mid,<_\Pi\rangle, \langle\mathbb{N};=,x,<_\Pi\rangle$ and $\langle\mathbb{N};=,+,x\rangle$ are interdefinable.
Publié le : 1998-06-14
Classification: 
@article{1183745507,
     author = {Bes, Alexis and Richard, Denis},
     title = {Undecidable Extensions of Skolem Arithmetic},
     journal = {J. Symbolic Logic},
     volume = {63},
     number = {1},
     year = {1998},
     pages = { 379-401},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745507}
}
Bes, Alexis; Richard, Denis. Undecidable Extensions of Skolem Arithmetic. J. Symbolic Logic, Tome 63 (1998) no. 1, pp.  379-401. http://gdmltest.u-ga.fr/item/1183745507/