R. K. Meyer once gave precise form to the question of whether relevant implication can be defined in any modal system, and his answer was `no'. In the present paper, we extend $\mathbf{S4}$, first with propositional quantifiers, to the system $\mathbf{S4\pi}+$; and then with definite propositional descriptions, to the system $\mathbf{S4\pi}+^{lp}$. We show that relevant implication can in some sense be defined in the modal system $\mathbf{S4\pi}+^{lp}$, although it cannot be defined in $\mathbf{S4\pi}+$.