Decidability of Scott's Model as an Ordered $\mathbb{Q}$-Vectorspace
Erdelyi-Szabo, Miklos
J. Symbolic Logic, Tome 62 (1997) no. 1, p. 917-924 / Harvested from Project Euclid
Let $L = \langle, +, h_q, 1\rangle_{q \in \mathbb{Q}}$ where $\mathbb{Q}$ is the set of rational numbers and $h_q$ is a one-place function symbol corresponding to multiplication by $q$. Then the $L$-theory of Scott's model for intuitionistic analysis is decidable.
Publié le : 1997-09-14
Classification: 
@article{1183745304,
     author = {Erdelyi-Szabo, Miklos},
     title = {Decidability of Scott's Model as an Ordered $\mathbb{Q}$-Vectorspace},
     journal = {J. Symbolic Logic},
     volume = {62},
     number = {1},
     year = {1997},
     pages = { 917-924},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745304}
}
Erdelyi-Szabo, Miklos. Decidability of Scott's Model as an Ordered $\mathbb{Q}$-Vectorspace. J. Symbolic Logic, Tome 62 (1997) no. 1, pp.  917-924. http://gdmltest.u-ga.fr/item/1183745304/