On the Complexity of Propositional Quantification in Intuitionistic Logic
Kremer, Philip
J. Symbolic Logic, Tome 62 (1997) no. 1, p. 529-544 / Harvested from Project Euclid
We define a propositionally quantified intuitionistic logic $\mathbf{H}\pi +$ by a natural extension of Kripke's semantics for propositional intutionistic logic. We then show that $\mathbf{H}\pi+$ is recursively isomorphic to full second order classical logic. $\mathbf{H}\pi+$ is the intuitionistic analogue of the modal systems $\mathbf{S}5\pi +, \mathbf{S}4\pi +, \mathbf{S}4.2\pi +, \mathbf{K}4\pi +, \mathbf{T}\pi +, \mathbf{K}\pi +$ and $\mathbf{B}\pi +$, studied by Fine.
Publié le : 1997-06-14
Classification: 
@article{1183745241,
     author = {Kremer, Philip},
     title = {On the Complexity of Propositional Quantification in Intuitionistic Logic},
     journal = {J. Symbolic Logic},
     volume = {62},
     number = {1},
     year = {1997},
     pages = { 529-544},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745241}
}
Kremer, Philip. On the Complexity of Propositional Quantification in Intuitionistic Logic. J. Symbolic Logic, Tome 62 (1997) no. 1, pp.  529-544. http://gdmltest.u-ga.fr/item/1183745241/