Applying the seed concept to Prikry tree forcing $\mathbb{P}_\mu$, I investigate how well $\mathbb{P}_\mu$ preserves the maximality property of ordinary Prikry forcing and prove that $\mathbb{P}_\mu$ Prikry sequences are maximal exactly when $\mu$ admits no non-canonical seeds via a finite iteration. In particular, I conclude that if $\mu$ is a strongly normal supercompactness measure, then $\mathbb{P}_\mu$ Prikry sequences are maximal, thereby proving, for a large class of measures, a conjecture of W. Hugh Woodin's.