Stable Structures with Few Substructures
Laskowski, Michael C. ; Mayer, Laura L.
J. Symbolic Logic, Tome 61 (1996) no. 1, p. 985-1005 / Harvested from Project Euclid
A countable, atomically stable structure $\mathfrak{U}$ in a finite, relational language has fewer than $2^\omega$ non-isomorphic substructures if and only if $\mathfrak{U}$ is cellular. An example shows that the finiteness of the language is necessary.
Publié le : 1996-09-14
Classification: 
@article{1183745088,
     author = {Laskowski, Michael C. and Mayer, Laura L.},
     title = {Stable Structures with Few Substructures},
     journal = {J. Symbolic Logic},
     volume = {61},
     number = {1},
     year = {1996},
     pages = { 985-1005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183745088}
}
Laskowski, Michael C.; Mayer, Laura L. Stable Structures with Few Substructures. J. Symbolic Logic, Tome 61 (1996) no. 1, pp.  985-1005. http://gdmltest.u-ga.fr/item/1183745088/