This paper deals with: (i) the theory $\mathrm{ID}^{\tt\#}_1$ which results from $\widehat{\mathrm{ID}}_1$ by restricting induction on the natural numbers to formulas which are positive in the fixed point constants, (ii) the theory $\mathrm{BON}(\mu)$ plus various forms of positive induction, and (iii) a subtheory of Peano arithmetic with ordinals in which induction on the natural numbers is restricted to formulas which are $\Sigma$ in the ordinals. We show that these systems have proof-theoretic strength $\varphi\omega 0$.