Possible PCF Algebras
Jech, Thomas ; Shelah, Saharon
J. Symbolic Logic, Tome 61 (1996) no. 1, p. 313-317 / Harvested from Project Euclid
There exists a family $\{B_\alpha\}_{\alpha < \omega_1}$ of sets of countable ordinals such that: (1) $\max B_\alpha = \alpha$, (2) if $\alpha \in B_\beta$ then $B_\alpha \subseteq B_\beta$, (3) if $\lambda \leq \alpha$ and $\lambda$ is a limit ordinal then $B_\alpha \cap \lambda$ is not in the ideal generated by the $B_\beta, \beta < \alpha$, and by the bounded subsets of $\lambda$, (4) there is a partition $\{A_n\}^\infty_{n = 0}$ of $\omega_1$ such that for every $\alpha$ and every $n, B_\alpha \cap A_n$ is finite.
Publié le : 1996-03-14
Classification: 
@article{1183744942,
     author = {Jech, Thomas and Shelah, Saharon},
     title = {Possible PCF Algebras},
     journal = {J. Symbolic Logic},
     volume = {61},
     number = {1},
     year = {1996},
     pages = { 313-317},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744942}
}
Jech, Thomas; Shelah, Saharon. Possible PCF Algebras. J. Symbolic Logic, Tome 61 (1996) no. 1, pp.  313-317. http://gdmltest.u-ga.fr/item/1183744942/