Bimodal Logics for Extensions of Arithmetical Theories
Beklemishev, Lev D.
J. Symbolic Logic, Tome 61 (1996) no. 1, p. 91-124 / Harvested from Project Euclid
We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of $(I\Delta_0 + EXP, PRA); (PRA, I\Sigma_1); (I\Sigma_m, I\Sigma_n)$ for $1 \leq m < n; (PA, ACA_0); (ZFC, ZFC + CH); (ZFC, ZFC + \neg CH)$ etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.
Publié le : 1996-03-14
Classification: 
@article{1183744929,
     author = {Beklemishev, Lev D.},
     title = {Bimodal Logics for Extensions of Arithmetical Theories},
     journal = {J. Symbolic Logic},
     volume = {61},
     number = {1},
     year = {1996},
     pages = { 91-124},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744929}
}
Beklemishev, Lev D. Bimodal Logics for Extensions of Arithmetical Theories. J. Symbolic Logic, Tome 61 (1996) no. 1, pp.  91-124. http://gdmltest.u-ga.fr/item/1183744929/