Ultrafilters on $\omega$
Baumgartner, James E.
J. Symbolic Logic, Tome 60 (1995) no. 1, p. 624-639 / Harvested from Project Euclid
We study the $I$-ultrafilters on $\omega$, where $I$ is a collection of subsets of a set $X$, usually $\mathbb{R}$ or $\omega_1$. The $I$-ultrafilters usually contain the $P$-points, often as a small proper subset. We study relations between $I$-ultrafilters for various $I$, and closure of $I$-ultrafilters under ultrafilter sums. We consider, but do not settle, the question whether $I$-ultrafilters always exist.
Publié le : 1995-06-14
Classification: 
@article{1183744759,
     author = {Baumgartner, James E.},
     title = {Ultrafilters on $\omega$},
     journal = {J. Symbolic Logic},
     volume = {60},
     number = {1},
     year = {1995},
     pages = { 624-639},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744759}
}
Baumgartner, James E. Ultrafilters on $\omega$. J. Symbolic Logic, Tome 60 (1995) no. 1, pp.  624-639. http://gdmltest.u-ga.fr/item/1183744759/