Hechler Reals
Labedzki, Grzegorz ; Repicky, Miroslav
J. Symbolic Logic, Tome 60 (1995) no. 1, p. 444-458 / Harvested from Project Euclid
We define a $\sigma$-ideal $\mathscr{J_D}$ on the set of functions $^\omega\omega$ with the property that a real $x \in ^\omega\omega$ is a Hechler real over $\mathbf{V}$ if and only if $x$ omits all Borel sets in $\mathscr{J_D}$. In fact we define a topology $\mathscr{D}$ on $^\omega\omega$ related to Hechler forcing such that $\mathscr{J_D}$ is the family of first category sets in $\mathscr{D}$. We study cardinal invariants of the ideal $\mathscr{J_D}$.
Publié le : 1995-06-14
Classification:  Hechler real,  dominating topology,  meager sets,  cardinal invariants,  03E40
@article{1183744746,
     author = {Labedzki, Grzegorz and Repicky, Miroslav},
     title = {Hechler Reals},
     journal = {J. Symbolic Logic},
     volume = {60},
     number = {1},
     year = {1995},
     pages = { 444-458},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744746}
}
Labedzki, Grzegorz; Repicky, Miroslav. Hechler Reals. J. Symbolic Logic, Tome 60 (1995) no. 1, pp.  444-458. http://gdmltest.u-ga.fr/item/1183744746/