Weak Presentations of Computable Fields
Jockusch, Carl G. ; Shlapentokh, Alexandra
J. Symbolic Logic, Tome 60 (1995) no. 1, p. 199-208 / Harvested from Project Euclid
It is shown that for any computable field $K$ and any r.e. degree $\mathbf{a}$ there is an r.e. set $A$ of degree $\mathbf{a}$ and a field $F \cong K$ with underlying set $A$ such that the field operations of $F$ (including subtraction and division) are extendible to (total) recursive functions. Further, it is shown that if $\mathbf{a}$ and $\mathbf{b}$ are r.e. degrees with $\mathbf{b} \leq \mathbf{a}$, there is a 1-1 recursive function $f : \mathbb{Q} \rightarrow \omega$ such that $f(\mathbb{Q}) \in \mathbf{a}, f(\mathbb{Z}) \in \mathbf{b}$, and the images of the field operations of $\mathbb{Q}$ under $f$ can be extended to recursive functions.
Publié le : 1995-03-14
Classification: 
@article{1183744686,
     author = {Jockusch, Carl G. and Shlapentokh, Alexandra},
     title = {Weak Presentations of Computable Fields},
     journal = {J. Symbolic Logic},
     volume = {60},
     number = {1},
     year = {1995},
     pages = { 199-208},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744686}
}
Jockusch, Carl G.; Shlapentokh, Alexandra. Weak Presentations of Computable Fields. J. Symbolic Logic, Tome 60 (1995) no. 1, pp.  199-208. http://gdmltest.u-ga.fr/item/1183744686/