Ramsey's Theorem states that if $P$ is a partition of $\lbrack\omega\rbrack^\kappa$ into finitely many partition classes, then there exists an infinite set of natural numbers which is homogeneous for $P$. We consider the degrees of unsolvability and arithmetical definability properties of infinite homogeneous sets for recursive partitions. We give Jockusch's proof of Seetapun's recent theorem that for all recursive partitions of $\lbrack\omega\rbrack^2$ into finitely many pieces, there exists an infinite homogeneous set $A$ such that $\emptyset' \nleq_T A$. Two technical extensions of this result are given, establishing arithmetical bounds for such a set $A$. Applications to reverse mathematics and introreducible sets are discussed.