The Consistency Strength of an Infinitary Ramsey Property
Kafkoulis, George
J. Symbolic Logic, Tome 59 (1994) no. 1, p. 1158-1195 / Harvested from Project Euclid
In this paper we study the consistency strength of the theory $\mathbf\mathrm{ZFC} + (\exists\kappa \text{strong limit})(\forall\mu < \kappa) \big(\kappa \underset{\mathrm\mathbf{OD}\rightarrow} (\omega)^\omega_{\mathbf{V}_\mu}\big)$, and we prove the consistency of this theory relative to the consistency of the existence of a supercompact cardinal and an inaccessible above it.
Publié le : 1994-12-14
Classification: 
@article{1183744618,
     author = {Kafkoulis, George},
     title = {The Consistency Strength of an Infinitary Ramsey Property},
     journal = {J. Symbolic Logic},
     volume = {59},
     number = {1},
     year = {1994},
     pages = { 1158-1195},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744618}
}
Kafkoulis, George. The Consistency Strength of an Infinitary Ramsey Property. J. Symbolic Logic, Tome 59 (1994) no. 1, pp.  1158-1195. http://gdmltest.u-ga.fr/item/1183744618/