Chains and Antichains in Interval Algebras
Bekkali, M.
J. Symbolic Logic, Tome 59 (1994) no. 1, p. 860-867 / Harvested from Project Euclid
Let $\kappa$ be a regular cardinal, and let $B$ be a subalgebra of an interval algebra of size $\kappa$. The existence of a chain or an antichain of size $\kappa$ in $\mathscr{B}$ is due to M. Rubin (see [7]). We show that if the density of $B$ is countable, then the same conclusion holds without this assumption on $\kappa$. Next we also show that this is the best possible result by showing that it is consistent with $2^{\aleph_0} = \aleph_{\omega_1}$ that there is a boolean algebra $B$ of size $\aleph_{\omega_1}$ such that length$(B) = \aleph_{\omega_1}$ is not attained and the incomparability of $B$ is less than $\aleph_{\omega_1}$. Notice that $B$ is a subalgebra of an interval algebra. For more on chains and antichains in boolean algebras see, e.g. [1] and [2].
Publié le : 1994-09-14
Classification:  Tree algebra,  interval algebra,  order set,  06A05,  06B05,  06E05,  06F05
@article{1183744553,
     author = {Bekkali, M.},
     title = {Chains and Antichains in Interval Algebras},
     journal = {J. Symbolic Logic},
     volume = {59},
     number = {1},
     year = {1994},
     pages = { 860-867},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744553}
}
Bekkali, M. Chains and Antichains in Interval Algebras. J. Symbolic Logic, Tome 59 (1994) no. 1, pp.  860-867. http://gdmltest.u-ga.fr/item/1183744553/