Semilinear Cell Decomposition
Liu, Nianzheng
J. Symbolic Logic, Tome 59 (1994) no. 1, p. 199-208 / Harvested from Project Euclid
We obtain a $p$-adic semilinear cell decomposition theorem using methods developed by Denef in [Journal fur die Reine und Angewandte Mathematik, vol. 369 (1986), pp. 154-166]. We also prove that any set definable with quantifiers in $(0, 1, +, =, \lambda_q, \mathbf{P}_n)_{\{n\in\mathbb{N},q\in\mathbb{Q}_p\}}$ may be defined without quantifiers, where $\lambda_q$ is scalar multiplication by $q$ and $\mathbf{P}_n$ is a unary predicate which denotes the nonzero $n$th powers in the $p$-adic field $\mathbb{Q}_p$. Such a set is called a $p$-adic semilinear set in this paper. Some further considerations are discussed in the last section.
Publié le : 1994-03-14
Classification: 
@article{1183744445,
     author = {Liu, Nianzheng},
     title = {Semilinear Cell Decomposition},
     journal = {J. Symbolic Logic},
     volume = {59},
     number = {1},
     year = {1994},
     pages = { 199-208},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744445}
}
Liu, Nianzheng. Semilinear Cell Decomposition. J. Symbolic Logic, Tome 59 (1994) no. 1, pp.  199-208. http://gdmltest.u-ga.fr/item/1183744445/