On the Number of Nonisomorphic Models of Size $|T|$
Chowdhury, Ambar
J. Symbolic Logic, Tome 59 (1994) no. 1, p. 41-59 / Harvested from Project Euclid
Let $T$ be an uncountable, superstable theory. In this paper we prove Theorem A. If $T$ has finite rank, then $I(|T|, T) \geq \aleph_0$. Theorem B. If $T$ is trivial, then $I(|T|, T) \geq \aleph_0$.
Publié le : 1994-03-14
Classification: 
@article{1183744432,
     author = {Chowdhury, Ambar},
     title = {On the Number of Nonisomorphic Models of Size $|T|$},
     journal = {J. Symbolic Logic},
     volume = {59},
     number = {1},
     year = {1994},
     pages = { 41-59},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744432}
}
Chowdhury, Ambar. On the Number of Nonisomorphic Models of Size $|T|$. J. Symbolic Logic, Tome 59 (1994) no. 1, pp.  41-59. http://gdmltest.u-ga.fr/item/1183744432/