Thin Equivalence Relations and Effective Decompositions
Hjorth, Greg
J. Symbolic Logic, Tome 58 (1993) no. 1, p. 1153-1164 / Harvested from Project Euclid
Let $E$ be a $\Sigma^1_1$ equivalence relation for which there does not exist a perfect set of inequivalent reals. If $0^{\tt\#}$ exists or if $\mathbf{V}$ is a forcing extension of $\mathbf{L}$, then there is a good $\triangle^1_2$ well-ordering of the equivalence classes.
Publié le : 1993-12-14
Classification:  Descriptive set theory,  thin equivalence relations,  04A15
@article{1183744365,
     author = {Hjorth, Greg},
     title = {Thin Equivalence Relations and Effective Decompositions},
     journal = {J. Symbolic Logic},
     volume = {58},
     number = {1},
     year = {1993},
     pages = { 1153-1164},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744365}
}
Hjorth, Greg. Thin Equivalence Relations and Effective Decompositions. J. Symbolic Logic, Tome 58 (1993) no. 1, pp.  1153-1164. http://gdmltest.u-ga.fr/item/1183744365/