On the Cantor-Bendixon Rank of Recursively Enumerable Sets
Cholak, Peter ; Downey, Rod
J. Symbolic Logic, Tome 58 (1993) no. 1, p. 629-640 / Harvested from Project Euclid
The main result of this paper is to show that for every recursive ordinal $\alpha \neq 0$ and for every nonrecursive r.e. degree $\mathbf{d}$ there is a r.e. set of rank $\alpha$ and degree $\mathbf{d}$.
Publié le : 1993-06-14
Classification: 
@article{1183744251,
     author = {Cholak, Peter and Downey, Rod},
     title = {On the Cantor-Bendixon Rank of Recursively Enumerable Sets},
     journal = {J. Symbolic Logic},
     volume = {58},
     number = {1},
     year = {1993},
     pages = { 629-640},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744251}
}
Cholak, Peter; Downey, Rod. On the Cantor-Bendixon Rank of Recursively Enumerable Sets. J. Symbolic Logic, Tome 58 (1993) no. 1, pp.  629-640. http://gdmltest.u-ga.fr/item/1183744251/