Sous-Groupes Periodiques D'Un Groupe Stable
Poizat, Bruno ; Wagner, Frank
J. Symbolic Logic, Tome 58 (1993) no. 1, p. 385-400 / Harvested from Project Euclid
We develop a Sylow theory for stable groups satisfying certain additional conditions (2-finiteness, solvability or smallness) and show that their maximal $p$-subgroups are locally finite and conjugate. Furthermore, we generalize a theorem of Baer-Suzuki on subgroups generated by a conjugacy class of $p$-elements.
Publié le : 1993-06-14
Classification: 
@article{1183744239,
     author = {Poizat, Bruno and Wagner, Frank},
     title = {Sous-Groupes Periodiques D'Un Groupe Stable},
     journal = {J. Symbolic Logic},
     volume = {58},
     number = {1},
     year = {1993},
     pages = { 385-400},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1183744239}
}
Poizat, Bruno; Wagner, Frank. Sous-Groupes Periodiques D'Un Groupe Stable. J. Symbolic Logic, Tome 58 (1993) no. 1, pp.  385-400. http://gdmltest.u-ga.fr/item/1183744239/