Countable Structures of Given Age
MacPherson, H. D. ; Pouzet, M. ; Woodrow, R. E.
J. Symbolic Logic, Tome 57 (1992) no. 1, p. 992-1010 / Harvested from Project Euclid
Let $L$ be a finite relational language. The age of a structure $\mathfrak{M}$ over $L$ is the set of isomorphism types of finite substructures of $\mathfrak{M}$. We classify those ages $\mathfrak{U}$ for which there are less than $2^\omega$ countably infinite pairwise nonisomorphic $L$-structures of age $\mathfrak{U}$.
Publié le : 1992-09-14
Classification: 
@article{1183744054,
     author = {MacPherson, H. D. and Pouzet, M. and Woodrow, R. E.},
     title = {Countable Structures of Given Age},
     journal = {J. Symbolic Logic},
     volume = {57},
     number = {1},
     year = {1992},
     pages = { 992-1010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183744054}
}
MacPherson, H. D.; Pouzet, M.; Woodrow, R. E. Countable Structures of Given Age. J. Symbolic Logic, Tome 57 (1992) no. 1, pp.  992-1010. http://gdmltest.u-ga.fr/item/1183744054/