A Propos E'Equations Generiques
Wagner, Frank O.
J. Symbolic Logic, Tome 57 (1992) no. 1, p. 548-554 / Harvested from Project Euclid
We prove that a stable solvable group $G$ which satisfies $x^n = 1$ generically is of finite exponent dividing some power of $n$. Furthermore, $G$ is nilpotent-by-finite. A second result is that in a stable group of finite exponent, involutions either have big centralisers, or invert a subgroup of finite index (which hence has to be abelian).
Publié le : 1992-06-14
Classification: 
@article{1183743975,
     author = {Wagner, Frank O.},
     title = {A Propos E'Equations Generiques},
     journal = {J. Symbolic Logic},
     volume = {57},
     number = {1},
     year = {1992},
     pages = { 548-554},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743975}
}
Wagner, Frank O. A Propos E'Equations Generiques. J. Symbolic Logic, Tome 57 (1992) no. 1, pp.  548-554. http://gdmltest.u-ga.fr/item/1183743975/