$\aleph_0$-Categorical Tree-Decomposable Structures
Lachlan, A. H.
J. Symbolic Logic, Tome 57 (1992) no. 1, p. 501-514 / Harvested from Project Euclid
Our purpose in this note is to study countable $\aleph_0$-categorical structures whose theories are tree-decomposable in the sense of Baldwin and Shelah. The permutation group corresponding to such a structure can be decomposed in a canonical manner into simpler permutation groups in the same class. As an application of the analysis we show that these structures are finitely homogeneous.
Publié le : 1992-06-14
Classification: 
@article{1183743969,
     author = {Lachlan, A. H.},
     title = {$\aleph\_0$-Categorical Tree-Decomposable Structures},
     journal = {J. Symbolic Logic},
     volume = {57},
     number = {1},
     year = {1992},
     pages = { 501-514},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743969}
}
Lachlan, A. H. $\aleph_0$-Categorical Tree-Decomposable Structures. J. Symbolic Logic, Tome 57 (1992) no. 1, pp.  501-514. http://gdmltest.u-ga.fr/item/1183743969/