The Beth-Closure of $\mathscr{L}(Q_\alpha)$ is Not Finitely Generated
Hella, Lauri ; Luosto, Kerkko
J. Symbolic Logic, Tome 57 (1992) no. 1, p. 442-448 / Harvested from Project Euclid
We prove that if $\aleph_\alpha$ is uncountable and regular, then the Beth-closure of $\mathscr{L}_{\omega\omega}(Q_\alpha)$ is not a sublogic of $\mathscr{L}_{\infty\omega}(\mathbf{Q}_n)$, where $\mathbf{Q}_n$ is the class of all $n$-ary generalized quantifiers. In particular, $B(\mathscr{L}_{\omega\omega}(Q_\alpha))$ is not a sublogic of any finitely generated logic; i.e., there does not exist a finite set $\mathbf{Q}$ of Lindstrom quantifiers such that $B(\mathscr{L}_{\omega\omega}(Q_\alpha)) \leq \mathscr{L}_{\omega\omega}(\mathbf{Q})$.
Publié le : 1992-06-14
Classification: 
@article{1183743963,
     author = {Hella, Lauri and Luosto, Kerkko},
     title = {The Beth-Closure of $\mathscr{L}(Q\_\alpha)$ is Not Finitely Generated},
     journal = {J. Symbolic Logic},
     volume = {57},
     number = {1},
     year = {1992},
     pages = { 442-448},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743963}
}
Hella, Lauri; Luosto, Kerkko. The Beth-Closure of $\mathscr{L}(Q_\alpha)$ is Not Finitely Generated. J. Symbolic Logic, Tome 57 (1992) no. 1, pp.  442-448. http://gdmltest.u-ga.fr/item/1183743963/