Lusin-Sierpinski Index for the Internal Sets
Zivaljevic, Bosko
J. Symbolic Logic, Tome 57 (1992) no. 1, p. 172-178 / Harvested from Project Euclid
We prove that there exists a function $f$ which reduces a given $\Pi^1_1$ subset $P$ of an internal set $X$ of an $\omega_1$-saturated nonstandard universe to the set $\mathbf{WF}$ of well-founded trees possessing properties similar to those possessed by the standard part map. We use $f$ to define the Lusin-Sierpinski index of points in $X$, and prove the basic properties of that index using the classical properties of the Lusin-Sierpinski index. An example of a $\Pi^1_1$ but not $\Sigma^1_1$ set is given.
Publié le : 1992-03-14
Classification: 
@article{1183743898,
     author = {Zivaljevic, Bosko},
     title = {Lusin-Sierpinski Index for the Internal Sets},
     journal = {J. Symbolic Logic},
     volume = {57},
     number = {1},
     year = {1992},
     pages = { 172-178},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743898}
}
Zivaljevic, Bosko. Lusin-Sierpinski Index for the Internal Sets. J. Symbolic Logic, Tome 57 (1992) no. 1, pp.  172-178. http://gdmltest.u-ga.fr/item/1183743898/