A Set Mapping with no Infinite Free Subsets
Komjath, P.
J. Symbolic Logic, Tome 56 (1991) no. 1, p. 1400-1402 / Harvested from Project Euclid
It is consistent that there exists a set mapping $F: \lbrack\omega_2\rbrack^2 \rightarrow \lbrack\omega_2\rbrack^{<\omega}$ such that $F(\alpha, \beta) \subseteq \alpha$ for $\alpha < \beta < \omega_2$ and there is no infinite free subset for $F$. This solves a problem of A. Hajnal and A. Mate.
Publié le : 1991-12-14
Classification: 
@article{1183743824,
     author = {Komjath, P.},
     title = {A Set Mapping with no Infinite Free Subsets},
     journal = {J. Symbolic Logic},
     volume = {56},
     number = {1},
     year = {1991},
     pages = { 1400-1402},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743824}
}
Komjath, P. A Set Mapping with no Infinite Free Subsets. J. Symbolic Logic, Tome 56 (1991) no. 1, pp.  1400-1402. http://gdmltest.u-ga.fr/item/1183743824/