A Construction of Superstable NDOP-NOTOP Groups
Baudisch, Andreas
J. Symbolic Logic, Tome 56 (1991) no. 1, p. 1385-1390 / Harvested from Project Euclid
The paper continues [1]. Let $S$ be a complete theory of ultraflat (e.g. planar) graphs as introduced in [4]. We show a strong form of NOTOP for $S$: The union of two models $M_1$ and $M_2$, independent over a common elementary submodel $M_0$, is the primary model over $M_1 \cup M_2$ of $S$. Then by results of [1] Mekler's construction [6] gives for such a theory $S$ of nice ultraflat graphs a superstable 2-step-nilpotent group of exponent $p (>2)$ with NDOP and NOTOP.
Publié le : 1991-12-14
Classification: 
@article{1183743822,
     author = {Baudisch, Andreas},
     title = {A Construction of Superstable NDOP-NOTOP Groups},
     journal = {J. Symbolic Logic},
     volume = {56},
     number = {1},
     year = {1991},
     pages = { 1385-1390},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743822}
}
Baudisch, Andreas. A Construction of Superstable NDOP-NOTOP Groups. J. Symbolic Logic, Tome 56 (1991) no. 1, pp.  1385-1390. http://gdmltest.u-ga.fr/item/1183743822/