Plongement Dense d'un Corps Ordonne dans sa Cloture Reelle
Delon, Francoise
J. Symbolic Logic, Tome 56 (1991) no. 1, p. 974-980 / Harvested from Project Euclid
We study the structures $(K \subset K^\mathrm{r})$, where $K$ is an ordered field and $K^\mathrm{r}$ its real closure, in the language of ordered fields with an additional unary predicate for the subfield $K$. Two such structures $(K \subset K^\mathrm{r})$ and $(L \subset L^\mathrm{r})$ are not necessarily elementary equivalent when $K$ and $L$ are. But with some saturation assumption on $K$ and $L$, then the two structures become equivalent, and we give a description of the complete theory.
Publié le : 1991-09-15
Classification: 
@article{1183743744,
     author = {Delon, Francoise},
     title = {Plongement Dense d'un Corps Ordonne dans sa Cloture Reelle},
     journal = {J. Symbolic Logic},
     volume = {56},
     number = {1},
     year = {1991},
     pages = { 974-980},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1183743744}
}
Delon, Francoise. Plongement Dense d'un Corps Ordonne dans sa Cloture Reelle. J. Symbolic Logic, Tome 56 (1991) no. 1, pp.  974-980. http://gdmltest.u-ga.fr/item/1183743744/