A Construction for Recursive Linear Orderings
Ash, C. J.
J. Symbolic Logic, Tome 56 (1991) no. 1, p. 673-683 / Harvested from Project Euclid
We re-express a previous general result in a way which seems easier to remember, using the terminology of infinite games. We show how this can be applied to construct recursive linear orderings, showing, for example, that if there is a $\triangle^0_{2\beta + 1}$ linear ordering of type $\tau$, then there is a recursive ordering of type $\omega^\beta \cdot \tau$.
Publié le : 1991-06-14
Classification:  03d45,  03C57,  03C75
@article{1183743666,
     author = {Ash, C. J.},
     title = {A Construction for Recursive Linear Orderings},
     journal = {J. Symbolic Logic},
     volume = {56},
     number = {1},
     year = {1991},
     pages = { 673-683},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743666}
}
Ash, C. J. A Construction for Recursive Linear Orderings. J. Symbolic Logic, Tome 56 (1991) no. 1, pp.  673-683. http://gdmltest.u-ga.fr/item/1183743666/