Admissible Suslin Cardinals in $L(\mathbf{R})$
Jackson, Steve
J. Symbolic Logic, Tome 56 (1991) no. 1, p. 260-275 / Harvested from Project Euclid
Assuming $\mathrm{AD} + (V = L(\mathbf{R}))$, it is shown that for $\kappa$ an admissible Suslin cardinal, $o(\kappa)$ (= the order type of the stationary subsets of $\kappa$) is "essentially" regular and closed under ultrapowers in a manner to be made precise. In particular, $o(\kappa) \gg \kappa^+, \kappa^{++}$, etc. It is conjectured that this characterizes admissibility for $L(\mathbf{R})$.
Publié le : 1991-03-14
Classification: 
@article{1183743565,
     author = {Jackson, Steve},
     title = {Admissible Suslin Cardinals in $L(\mathbf{R})$},
     journal = {J. Symbolic Logic},
     volume = {56},
     number = {1},
     year = {1991},
     pages = { 260-275},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743565}
}
Jackson, Steve. Admissible Suslin Cardinals in $L(\mathbf{R})$. J. Symbolic Logic, Tome 56 (1991) no. 1, pp.  260-275. http://gdmltest.u-ga.fr/item/1183743565/