Weak Cylindric Set Algebras and Weak Subdirect Indecomposability
Andreka, H. ; Nemeti, I. ; Thompson, R. J.
J. Symbolic Logic, Tome 55 (1990) no. 1, p. 577-588 / Harvested from Project Euclid
In this note we prove that the abstract property "weakly subdirectly indecomposable" does not characterize the class $\mathrm{IWs}_\alpha$ of weak cylindric set algebras. However, we give another (similar) abstract property characterizing $\mathrm{IWs}_\alpha$. The original property does characterize the directed unions of members of $\mathrm{IWs}_alpha \operatorname{iff} \alpha$ is countable. Free algebras will be shown to satisfy the original property.
Publié le : 1990-06-14
Classification: 
@article{1183743315,
     author = {Andreka, H. and Nemeti, I. and Thompson, R. J.},
     title = {Weak Cylindric Set Algebras and Weak Subdirect Indecomposability},
     journal = {J. Symbolic Logic},
     volume = {55},
     number = {1},
     year = {1990},
     pages = { 577-588},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743315}
}
Andreka, H.; Nemeti, I.; Thompson, R. J. Weak Cylindric Set Algebras and Weak Subdirect Indecomposability. J. Symbolic Logic, Tome 55 (1990) no. 1, pp.  577-588. http://gdmltest.u-ga.fr/item/1183743315/