Universal Structures in Power $\aleph_1$
Mekler, Alan H.
J. Symbolic Logic, Tome 55 (1990) no. 1, p. 466-477 / Harvested from Project Euclid
It is consistent with $\neg\mathrm{CH}$ that every universal theory of relational structures with the joint embedding property and amalgamation for $\mathscr{P}^-(3)$-diagrams has a universal model of cardinality $\aleph_1$. For classes with amalgamation for $\mathscr{P}^-(4)$-diagrams it is consistent that $2^{\aleph_0} > \aleph_2$ and there is a universal model of cardinality $\aleph_2$.
Publié le : 1990-06-14
Classification: 
@article{1183743307,
     author = {Mekler, Alan H.},
     title = {Universal Structures in Power $\aleph\_1$},
     journal = {J. Symbolic Logic},
     volume = {55},
     number = {1},
     year = {1990},
     pages = { 466-477},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743307}
}
Mekler, Alan H. Universal Structures in Power $\aleph_1$. J. Symbolic Logic, Tome 55 (1990) no. 1, pp.  466-477. http://gdmltest.u-ga.fr/item/1183743307/