Bad Groups of Finite Morley Rank
Corredor, Luis Jaime
J. Symbolic Logic, Tome 54 (1989) no. 1, p. 768-773 / Harvested from Project Euclid
We prove the following theorem. Let $G$ be a connected simple bad group (i.e. of finite Morley rank, nonsolvable and with all the Borel subgroups nilpotent) of minimal Morley rank. Then the Borel subgroups of $G$ are conjugate to each other, and if $B$ is a Borel subgroup of $G$, then $G = \bigcup_{g \in G}B^g,N_G(B) = B$, and $G$ has no involutions.
Publié le : 1989-09-14
Classification: 
@article{1183743015,
     author = {Corredor, Luis Jaime},
     title = {Bad Groups of Finite Morley Rank},
     journal = {J. Symbolic Logic},
     volume = {54},
     number = {1},
     year = {1989},
     pages = { 768-773},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743015}
}
Corredor, Luis Jaime. Bad Groups of Finite Morley Rank. J. Symbolic Logic, Tome 54 (1989) no. 1, pp.  768-773. http://gdmltest.u-ga.fr/item/1183743015/