The Cofinality of Cardinal Invariants Related to Measure and Category
Bartoszynski, Tomek ; Ihoda, Jaime I. ; Shelah, Saharon
J. Symbolic Logic, Tome 54 (1989) no. 1, p. 719-726 / Harvested from Project Euclid
We prove that the following are consistent with ZFC. 1. $2^\omega = \aleph_{\omega_1} + K_C = \aleph_{\omega_1} + K_B = K_U = \omega_2$ (for measure and category simultaneously). 2. $2^\omega = \aleph_{\omega_1} = K_C(\mathscr{L}) + K_C(\mathscr{M}) = \omega_2$. This concludes the discussion about the cofinality of $K_C$.
Publié le : 1989-09-14
Classification: 
@article{1183743011,
     author = {Bartoszynski, Tomek and Ihoda, Jaime I. and Shelah, Saharon},
     title = {The Cofinality of Cardinal Invariants Related to Measure and Category},
     journal = {J. Symbolic Logic},
     volume = {54},
     number = {1},
     year = {1989},
     pages = { 719-726},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743011}
}
Bartoszynski, Tomek; Ihoda, Jaime I.; Shelah, Saharon. The Cofinality of Cardinal Invariants Related to Measure and Category. J. Symbolic Logic, Tome 54 (1989) no. 1, pp.  719-726. http://gdmltest.u-ga.fr/item/1183743011/