An Independence Result in Quadratic Form Theory: Infinitary Combinatorics Applied to $\varepsilon$-Hermitian Spaces
Appenzeller, Fred
J. Symbolic Logic, Tome 54 (1989) no. 1, p. 689-699 / Harvested from Project Euclid
There are shown to many $\epsilon$-Hermitian spaces, and an isometry criterion is stated which holds under $MA_{\aleph_1}$ and is false under $2^{\aleph_0} < 2^{\aleph_1}$.
Publié le : 1989-09-14
Classification: 
@article{1183743008,
     author = {Appenzeller, Fred},
     title = {An Independence Result in Quadratic Form Theory: Infinitary Combinatorics Applied to $\varepsilon$-Hermitian Spaces},
     journal = {J. Symbolic Logic},
     volume = {54},
     number = {1},
     year = {1989},
     pages = { 689-699},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183743008}
}
Appenzeller, Fred. An Independence Result in Quadratic Form Theory: Infinitary Combinatorics Applied to $\varepsilon$-Hermitian Spaces. J. Symbolic Logic, Tome 54 (1989) no. 1, pp.  689-699. http://gdmltest.u-ga.fr/item/1183743008/