Classification and Interpretation
Baudisch, Andreas
J. Symbolic Logic, Tome 54 (1989) no. 1, p. 138-159 / Harvested from Project Euclid
Let $S$ and $T$ be countable complete theories. We assume that $T$ is superstable without the dimensional order property, and $S$ is interpretable in $T$ in such a way that every model of $S$ is coded in a model of $T$. We show that $S$ does not have the dimensional order property, and we discuss the question of whether $\operatorname{Depth}(S) \leq \operatorname{Depth}(T)$. For Mekler's uniform interpretation of arbitrary theories $S$ of finite similarity type into suitable theories $T_s$ of groups we show that $\operatorname{Depth}(S) \leq \operatorname{Depth}(T_S) \leq 1 + \operatorname{Depth}(S)$.
Publié le : 1989-03-14
Classification: 
@article{1183742857,
     author = {Baudisch, Andreas},
     title = {Classification and Interpretation},
     journal = {J. Symbolic Logic},
     volume = {54},
     number = {1},
     year = {1989},
     pages = { 138-159},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183742857}
}
Baudisch, Andreas. Classification and Interpretation. J. Symbolic Logic, Tome 54 (1989) no. 1, pp.  138-159. http://gdmltest.u-ga.fr/item/1183742857/