Ultrafilters of Character $\omega_1$
Hart, Klaas Pieter
J. Symbolic Logic, Tome 54 (1989) no. 1, p. 1-15 / Harvested from Project Euclid
Using side-by-side Sacks forcing, it is shown that it is consistent that $2^\omega$ be large and that there be many types of ultrafilters of character $\omega_1$.
Publié le : 1989-03-14
Classification:  Side-by-side Sacks forcing,  ultrafilters of character $\omega_1$,  Rudin-Frolik order
@article{1183742846,
     author = {Hart, Klaas Pieter},
     title = {Ultrafilters of Character $\omega\_1$},
     journal = {J. Symbolic Logic},
     volume = {54},
     number = {1},
     year = {1989},
     pages = { 1-15},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183742846}
}
Hart, Klaas Pieter. Ultrafilters of Character $\omega_1$. J. Symbolic Logic, Tome 54 (1989) no. 1, pp.  1-15. http://gdmltest.u-ga.fr/item/1183742846/