Injectives in Finitely Generated Universal Horn Classes
Albert, Michael H. ; Willard, Ross
J. Symbolic Logic, Tome 52 (1987) no. 1, p. 786-792 / Harvested from Project Euclid
Let $\mathbf{K}$ be a finite set of finite structures. We give a syntactic characterization of the property: every element of $\mathbf{K}$ is injective in $\mathbf{ISP(K)}$. We use this result to establish that $\mathscr{A}$ is injective in $\mathbf{ISP}(\mathscr{A})$ for every two-element algebra $\mathscr{A}$.
Publié le : 1987-09-14
Classification: 
@article{1183742443,
     author = {Albert, Michael H. and Willard, Ross},
     title = {Injectives in Finitely Generated Universal Horn Classes},
     journal = {J. Symbolic Logic},
     volume = {52},
     number = {1},
     year = {1987},
     pages = { 786-792},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183742443}
}
Albert, Michael H.; Willard, Ross. Injectives in Finitely Generated Universal Horn Classes. J. Symbolic Logic, Tome 52 (1987) no. 1, pp.  786-792. http://gdmltest.u-ga.fr/item/1183742443/