This paper presents a unified treatment of the propositional and first-order many-valued logics through the method of tableaux. It is shown that several important results on the proof theory and model theory of those logics can be obtained in a general way. We obtain, in this direction, abstract versions of the completeness theorem, model existence theorem (using a generalization of the classical analytic consistency properties), compactness theorem and Lowenheim-Skolem theorem. The paper is completely self-contained and includes examples of application to particular many-valued formal systems.