A Hierarchy of Filters On Regular Uncountable Cardinals
Jech, Thomas
J. Symbolic Logic, Tome 52 (1987) no. 1, p. 388-395 / Harvested from Project Euclid
We introduce a well-founded relation < between filters on the space of descending sequences of ordinals. For each regular uncountable cardinal $\kappa$, the length of the relation is an ordinal $o(\kappa) \leq (2^\kappa)^+$.
Publié le : 1987-06-14
Classification: 
@article{1183742368,
     author = {Jech, Thomas},
     title = {A Hierarchy of Filters On Regular Uncountable Cardinals},
     journal = {J. Symbolic Logic},
     volume = {52},
     number = {1},
     year = {1987},
     pages = { 388-395},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183742368}
}
Jech, Thomas. A Hierarchy of Filters On Regular Uncountable Cardinals. J. Symbolic Logic, Tome 52 (1987) no. 1, pp.  388-395. http://gdmltest.u-ga.fr/item/1183742368/