Some New Natural $\alpha$-RE-Degrees
Bailey, Colin G.
J. Symbolic Logic, Tome 52 (1987) no. 1, p. 227-231 / Harvested from Project Euclid
If $\alpha$ is a singular cardinal (either real or fake) in $L$, I exhibit many natural $\alpha$-re subsets, defined uniformly from the $\triangle_1$ subsets of $\alpha$. If $\alpha$ is a true cardinal this provides an uppersemilattice (usl) embedding from the lattice of $\triangle_1$ subsets of $\alpha$ into the usl of $\alpha$-re-degrees. It will also be shown that this embedding cannot be extended to the $\Sigma_1$ subsets of $\alpha$.
Publié le : 1987-03-14
Classification: 
@article{1183742327,
     author = {Bailey, Colin G.},
     title = {Some New Natural $\alpha$-RE-Degrees},
     journal = {J. Symbolic Logic},
     volume = {52},
     number = {1},
     year = {1987},
     pages = { 227-231},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183742327}
}
Bailey, Colin G. Some New Natural $\alpha$-RE-Degrees. J. Symbolic Logic, Tome 52 (1987) no. 1, pp.  227-231. http://gdmltest.u-ga.fr/item/1183742327/