Strong Analogues of Martin's Axiom Imply Axiom R
Beaudoin, Robert E.
J. Symbolic Logic, Tome 52 (1987) no. 1, p. 216-218 / Harvested from Project Euclid
We show that either $PFA^+$ or Martin's maximum implies Fleissner's Axiom $\mathbf{R}$, a reflection principle for stationary subsets of $P_{\aleph_1}(\lambda)$. In fact, the "plus version" (for one term denoting a stationary set) of Martin's axiom for countably closed partial orders implies Axiom $\mathbf{R}$.
Publié le : 1987-03-14
Classification: 
@article{1183742325,
     author = {Beaudoin, Robert E.},
     title = {Strong Analogues of Martin's Axiom Imply Axiom R},
     journal = {J. Symbolic Logic},
     volume = {52},
     number = {1},
     year = {1987},
     pages = { 216-218},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183742325}
}
Beaudoin, Robert E. Strong Analogues of Martin's Axiom Imply Axiom R. J. Symbolic Logic, Tome 52 (1987) no. 1, pp.  216-218. http://gdmltest.u-ga.fr/item/1183742325/