The Natural Hierarchy and Quasi-Hierarchy of Constructibility Degrees
Welch, Philip
J. Symbolic Logic, Tome 51 (1986) no. 1, p. 130-134 / Harvested from Project Euclid
We investigate the set $S_2$ of "quickly sharped" reals: \begin{align*}S_2 &= \{x \mid x \in M, M \text{the} <^\ast-\text{least mouse} \not\in L\lbrack x\rbrack\} \\ &= \{x \mid L\lbrack x\rbrack \models "V = K"\},\\ \end{align*} in the manner of [K] defining a natural hierarchy and quasi-hierarchy of constructibility degrees and identifying their termination points.
Publié le : 1986-03-14
Classification: 
@article{1183742033,
     author = {Welch, Philip},
     title = {The Natural Hierarchy and Quasi-Hierarchy of Constructibility Degrees},
     journal = {J. Symbolic Logic},
     volume = {51},
     number = {1},
     year = {1986},
     pages = { 130-134},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1183742033}
}
Welch, Philip. The Natural Hierarchy and Quasi-Hierarchy of Constructibility Degrees. J. Symbolic Logic, Tome 51 (1986) no. 1, pp.  130-134. http://gdmltest.u-ga.fr/item/1183742033/